Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Genes Genomics ; 46(5): 613-620, 2024 May.
Article En | MEDLINE | ID: mdl-38363456

BACKGROUND: Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE: Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS: In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION: This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.


Myopathies, Nemaline , Female , Humans , Child, Preschool , Myopathies, Nemaline/genetics , Myopathies, Nemaline/diagnosis , Creatine Kinase/genetics , Homozygote , Genetic Testing , Troponin T/genetics
2.
Mol Syndromol ; 15(1): 1-13, 2024 Feb.
Article En | MEDLINE | ID: mdl-38357258

Introduction: Alport syndrome (AS) is an inherited, rare, progressive kidney disease that affects the eye and ear physiology. Pathogenic variants of COL4A5 account for 85% of all cases, while COL4A3 and COL4A4 account for the remaining 15%. Methods: Targeted next-generation sequencing of the COL4A3, COL4A4, and COL4A5 genes was performed in 125 Turkish patients with AS. The patients were compared to 45 controls and open-access population data. Results: The incidence of AS variants in patients was found as 21.6%. 27 variants were identified as pathogenic/likely pathogenic, 28 as variant of uncertain significance, and 52 as benign/likely benign. We also found 31 novel variants (14 in COL4A3, 6 in COL4A4, and 11 in COL4A5) of which 27 were classified as pathogenic/likely pathogenic. Pathogenic/likely Pathogenic variants were most commonly found in the COL4A5 gene, consistent with the literature. This study contributed novel variants associated with AS to the literature. Conclusion: Genetic testing is a crucial part for the diagnosis and management of AS. Studies on the genetic etiology of AS are limited for the Turkish population. We believe that this study will contribute to the literature and the clinical decision-making process of patients with AS and emphasize the importance of genetic counseling.

3.
Rev Assoc Med Bras (1992) ; 68(9): 1282-1287, 2022 Sep.
Article En | MEDLINE | ID: mdl-36134775

OBJECTIVE: Chronic kidney disease (CKD) remains one of the major common health problems, and the number of people affected by the disease is progressively increasing in Turkey and worldwide. This study aimed to investigate molecular defects in Alport syndrome (AS) and other genes in patients with clinically suspected CKD using whole-exome sequencing (WES). METHODS: Patients with clinical suspicion of CKD were included in the study. Molecular genetic analyses were performed on genomic DNA by using WES. RESULTS: A total of 15 with 5 different pathogenic or likely pathogenic variants were identified in CKD patients, with a diagnostic rate of 30%. Eight variants of uncertain significance were also detected. In this study, 10 variants were described for the first time. As a result, we detected variants associated with CKD in our study population and found AS as the most common CKD after other related kidney diseases. CONCLUSIONS: Our results suggest that in heterogeneous diseases such as CKD, WES analysis enables accurate identification of underlying molecular defects promptly. Although CKD accounts for 10-14% of all renal dysfunction, molecular genetic diagnosis is necessary for optimal long-term treatment, prognosis, and effective genetic counseling. .


Nephritis, Hereditary , Renal Insufficiency, Chronic , DNA , Humans , Nephritis, Hereditary/genetics , Prognosis , Renal Insufficiency, Chronic/genetics , Exome Sequencing/methods
4.
EXCLI J ; 14: 890-9, 2015.
Article En | MEDLINE | ID: mdl-26862320

The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish.

...